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Abstract

Background: For automated reading of scientific publications to extract useful

information about molecular mechanisms it is critical that genes, proteins and

other entities be correctly associated with uniform identifiers, a process known as

named entity linking or “grounding.” Correct grounding is essential for resolving

relationships among mined information, curated interaction databases, and

biological datasets. The accuracy of this process is largely dependent on the

availability of machine-readable resources associating synonyms and abbreviations

commonly found in biomedical literature with uniform identifiers.

Results: In a task involving automated reading of ∼215,000 articles using the

REACH event extraction software we found that grounding was disproportionately

inaccurate for multi-protein families (e.g., “AKT”) and complexes with multiple

subunits (e.g.“NF-κB”). To address this problem we constructed FamPlex, a

manually curated resource defining protein families and complexes as they are

commonly encountered in biomedical text. In FamPlex the gene-level constituents

of families and complexes are defined in a flexible format allowing for multi-level,

hierarchical membership. To create FamPlex, text strings corresponding to

entities were identified empirically from literature and linked manually to uniform

identifiers; these identifiers were also mapped to equivalent entries in multiple

related databases. FamPlex also includes curated prefix and suffix patterns that

improve named entity recognition and event extraction. Evaluation of REACH

extractions on a test corpus of ∼54,000 articles showed that FamPlex

significantly increased grounding accuracy for families and complexes (from 15%

to 71%). The hierarchical organization of entities in FamPlex also made it

possible to integrate otherwise unconnected mechanistic information across

families, subfamilies, and individual proteins. Applications of FamPlex to the

TRIPS/DRUM reading system and the Biocreative VI Bioentity Normalization

Task dataset demonstrated the utility of FamPlex in other settings.

Conclusion: FamPlex is an effective resource for improving named entity

recognition, grounding, and relationship resolution in automated reading of

biomedical text. The content in FamPlex is available in both tabular and Open

Biomedical Ontology formats at https://github.com/sorgerlab/famplex

under the Creative Commons CC0 license and has been integrated into the

TRIPS/DRUM and REACH reading systems.

Keywords: Text mining; protein families; grounding; named entity linking;

named entity recognition; biocuration; event extraction; natural language

processing
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Background

A critical challenge in contemporary molecular biology is integrating detailed mech- 1

anistic information about specific genes and proteins with genome-scale information 2

about the interaction networks in which these genes participate. Networks of molec- 3

ular mechanisms are powerful tools for interpreting large-scale data in the context 4

of prior knowledge [1, 2, 3, 4]. The construction of biological networks benefits 5

from exchange formats such as BioPAX [5] that allow disparate databases to be 6

aggregated into uniform, machine-readable resources such as Pathway Commons 7

[6]. However, a significant fraction of the information available in the literature has 8

not been recorded in pathway databases. Text mining has the potential to address 9

this gap by augmenting curated network resources with molecular mechanisms au- 10

tomatically extracted from the literature. However, current systems are not yet able 11

to extract mechanisms with a quality equal to that of human curators [7]. 12

One challenge in using text-mined information for biological data analysis is that 13

molecular mechanisms are often described in the literature in terms of aggregate 14

entities such as multi-protein families (e.g., “RAS”, “AKT”) and multi-subunit 15

complexes (e.g., “NF-κB, “AP-1”) rather than the specific genes or proteins mea- 16

sured in large-scale experiments. For example, a Pubmed search for “NF-kappaB” 17

yields over 64,000 citations; this transcription factor is not a single molecular entity 18

but rather a class of heterodimers involving combinations of at least five different 19

genes in two families (RELA, RELB, REL, NFKB1, and NFKB2 ). This poses two 20

challenges for machine reading. First, the text string “NF-κB” must be normalized 21

to a standard identifier, a task known variously as named entity linking (NEL), 22

named entity normalization (NEN), named entity disambiguation (NED), or sim- 23

ply “grounding.” [8]. Second, the mapping of “NF-κB” to its constituents must be 24

established so that the activities of NF-κB can be linked to the properties of the 25

genes from which it is comprised. Such “static relations” must be resolved either 26

by explicit curation or algorithmically [9, 10, 11]. 27

Success in the first task, grounding, is essential for practical applications of text 28

mining [12, 13]. Entities without associated identifiers cannot be used for down- 29

stream assembly and interpretation tasks, and systematic misidentification of en- 30

tities clutters extracted networks with errors that skew data analysis. Relevant 31

approaches to grounding have been studied extensively in the context of the gen- 32
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eral problem of biomedical entity normalization [14, 8, 15, 16], and generally involve 33

two steps. First, a named entity as encountered in text is normalized, for example 34

by stemming [17], removal of affixes [10], or expansion of abbreviations [16]. Effec- 35

tive preprocessing depends on an explicit or implicit representation of how specific 36

entities (e.g., diseases vs. chemicals vs. genes) variously appear in text (see 2.2.4 in 37

[16]). 38

The normalized string is then matched to names and synonyms in existing tax- 39

onomies [13]. Difficulties in grounding protein families and complexes are encoun- 40

tered in this latter step because there is no standard ontology for these entities as 41

they are commonly described in the scientific literature. Relevant identifiers can be 42

found in protein family databases (InterPro, PFAM, NextProt) and curated inter- 43

action databases (Reactome, SIGNOR, OpenBEL) allowing complexes and families 44

to be resolved into their constituent genes. However, such databases generally lack 45

lexical synonyms corresponding to the many ways in which entities are referenced 46

in text, limiting their value for literature mining. Conversely, general biomedical 47

vocabularies and thesauri such as NCIT and MeSH contain entries and lexical syn- 48

onyms for families and complexes but often lack the ontological resolution of these 49

terms into child concepts (e.g. entries C94701 in NCIT and D055372 in MeSH for 50

the holo-enzyme AMPK, neither of which define its constituents). In combination, 51

these diverse databases provide substantial information about families and com- 52

plexes, but integration of this information is difficult because they rarely contain 53

cross-references for related concepts among themselves. Prior work has addressed as- 54

pects of normalization for protein families, for example by automatically identifying 55

families and their constituents directly from the literature [9, 15] or by combining 56

information in gene family databases with patterns in the names and synonyms of 57

genes [10, 18]. However, the problem of identifying, normalizing, and linking infor- 58

mation about protein families and complexes is less well-understood than that of 59

gene normalization [8, 18, 16], and draws on a smaller base of taxonomic resources. 60

In this paper we describe FamPlex, a curated lexical and ontological resource 61

that improves grounding and relationship resolution for families and complexes 62

encountered in the mining and curation of biomedical text. FamPlex contains a 63

set of identifiers for protein families and complexes along with mappings that 64

link: (i) text strings and FamPlex identifiers, (ii) FamPlex identifiers and iden- 65

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/225698doi: bioRxiv preprint first posted online Nov. 27, 2017; 

http://dx.doi.org/10.1101/225698
http://creativecommons.org/licenses/by/4.0/


Bachman et al. Page 5 of 29

tifiers representing protein families and complexes in other resources, and (iii) 66

FamPlex families/complexes and their constituent members. FamPlex also con- 67

tains a list of prefixes and suffixes frequently appended to protein names for 68

use in named entity recognition (NER) and entity normalization. The FamPlex 69

resource consists of a set of comma-separated value (CSV) files listing entities 70

and relations, along with Python scripts for checking consistency and identify- 71

ing equivalent identifiers in other databases. FamPlex is hosted on GitHub at 72

https://github.com/sorgerlab/famplex and is made available under the Cre- 73

ative Commons CC0 license. It is also available in the Open Biomedical On- 74

tology (OBO) format and can be accessed via the NCBO BioPortal [19] at 75

http://bioportal.bioontology.org/ontologies/FPLX. 76

Construction and Content 77

Development of FamPlex was motivated by an empirical analysis of grounding ac- 78

curacy in events extracted by the REACH biomedical literature mining software 79

[20, 21]. As described in detail below, we found that grounding of protein fam- 80

ilies was disproportionately inaccurate and that a relatively small proportion of 81

frequently misgrounded entities accounted for the bulk of all grounding errors. An 82

examination of existing resources highlighted the fragmented nature of information 83

on protein families and complexes and the general lack of suitability of these re- 84

sources for literature mining. FamPlex was conceived as a a “bridging” resource 85

to link available information about families, complexes, and other frequently mis- 86

grounded entities across a diverse set of existing bioinformatics databases. 87

At the core of FamPlex is a set of identifiers representing protein families and 88

complexes (Figure 1A). FamPlex represents the hierarchical relationships of these 89

high-level entities to each other and to individual genes, along with corresponding 90

synonyms in text and cross-references to other databases where available. Entities 91

and mappings are recorded in a set of CSV files. 92

Selection of corpus for curation and evaluation 93

To empirically guide curation of entities and synonyms based on the frequency of 94

their appearance in literature we selected a corpus of articles focused on the proteins, 95

protein families, complexes, and molecular events relevant to pathway biocuration 96

(Figure 1B). Specifically, we combined the 3,752 signaling proteins in Reactome [22] 97

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/225698doi: bioRxiv preprint first posted online Nov. 27, 2017; 

http://dx.doi.org/10.1101/225698
http://creativecommons.org/licenses/by/4.0/


Bachman et al. Page 6 of 29

with the members of protein families and complexes defined in OpenBEL resource 98

files [23]. From this gene list a corpus of 269,489 papers was assembled by retrieving 99

papers curated for each gene from the Entrez Gene database [24]. Abstracts were 100

obtained from MEDLINE and full texts were downloaded either from the Pubmed 101

Central Open Access subset (in XML or text format), the Pubmed Central Author 102

Manuscript Collection, or via the Elsevier text and data mining API (Table 1). 103

Event extraction from text using REACH and INDRA 104

The corpus of ∼270,000 papers was processed with the REACH event extraction 105

software [21], yielding a set of sentences, named entities, and extracted relations 106

(Figure 1B). REACH is built on widely-used methods for syntactic parsing and 107

named-entity recognition: it uses the Stanford CoreNLP parser [25] for syntactic 108

parsing and draws information on biology-specific named entities from Uniprot, 109

InterPro, PFAM, HMDB, ChEBI, Gene Ontology, MeSH, Cellosaurus, ATCC, and 110

CellOntology. As a final step we used the INDRA software [26] to convert events 111

extracted by REACH into INDRA Statements, a format suitable for analyzing and 112

assembling sets of mechanisms into networks and executable models of various kinds. 113

Characterizing patterns of grounding errors 114

The set of entities and events extracted by REACH was used to characterize patterns 115

of grounding errors and prioritize entities and their lexical synonyms for subsequent 116

curation (Figure 1B). Prior to curation, the corpus of articles was divided into 117

two sets: a “training” set and a “test” set consisting of 80% (215,360) and 20% 118

(53,840) of the articles, respectively. The “training” set of articles was processed 119

with REACH in the absence of FamPlex to evaluate baseline grounding accuracy 120

and guide curation. Following curation, the “test” set of articles was processed 121

with a version of REACH incorporating FamPlex. The partitioning of articles was 122

performed to ensure that estimates of grounding accuracy would not be biased 123

toward the specific set of articles used for curation. 124

Definition of protein families and complexes and their constituents 125

Identifiers for protein families and complexes in FamPlex were created by draw- 126

ing on two resources: 1) identifiers created de novo in FamPlex to correspond 127

to named entities encountered in event extraction, and 2) identifiers drawn from 128
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the OpenBEL resource. In the first case, identifiers were prioritized by their 129

frequency of occurrence among extracted events, with common entities such as 130

“NF-kappaB”, “Ras”, “PI3-kinase”, “Akt”, etc., accounting for a significant frac- 131

tion of grounding errors. In the case of OpenBEL, identifiers for protein fami- 132

lies and complexes were drawn from the resource files protein-families.xbel 133

and named-complexes.xbel, accessible via the OpenBEL GitHub repository at 134

https://github.com/OpenBEL/openbel-framework-resources. The full list of all 135

FamPlex identifiers is contained in the text file entities.csv. 136

Members of protein families and complexes are enumerated in the file relations.csv137

using two types of relations: isa and partof, denoting membership in a family or 138

a complex, respectively (Figure 1A). These relationships can be applied hierarchi- 139

cally to describe multi-level protein subfamily relationships or protein complexes 140

that are hetero-oligomers of subunits belonging to distinct families (Figure 2A). 141

For example, 5’ AMP-activated protein kinase, or AMPK, is a heterotrimeric pro- 142

tein consisting of alpha, beta, and gamma subunits: the alpha and beta subunits 143

comprise families with two isoforms each, and the gamma subunit family has three 144

isoforms. This hierarchical structure can be represented in FamPlex by using a 145

combination of isa and partof relationships to link the identifiers for the subunit 146

genes to FamPlex-specific identifiers for the subunit families and the full complex 147

(Figure 2A). 148

Information on protein family and complex membership was drawn from Open- 149

BEL resource files, HGNC, Reactome, InterPro, and Wikipedia, and manually cu- 150

rated for consistency. Where there were discrepancies among sources about family 151

or complex membership we prioritized what we judged to be the most common 152

usage. For example, the InterPro entry corresponding to the Ras protein family 153

(IPR020849) lists 145 human proteins as members, whereas usage in literature and 154

interaction databases recognizes only KRAS, NRAS, and HRAS as family members. 155

Mapping FamPlex identifiers to related resources 156

Entities defined in FamPlex are cross-referenced to corresponding identifiers in other 157

databases and ontologies in the equivalences file (equivalences.csv; Figure 1A). 158

Figure 2B shows the subsets of FamPlex identifiers containing mappings to dif- 159

ferent types of external databases: databases of interactions curated from litera- 160
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ture (OpenBEL, Reactome), databases containing specific information about pro- 161

tein families and complexes (PFAM, InterPro, NextProt, and Gene Ontology), and 162

general-purpose biomedical vocabularies (NCIT, MeSH). There are 32 unmapped 163

entries for which no equivalent entry was found in external databases; these en- 164

tries are implicitly defined in FamPlex by the specific genes that they contain as 165

members. 166

Identifier mappings between FamPlex and Reactome and InterPro were obtained 167

in a semi-automated fashion. The gene-level members of each FamPlex family and 168

complex were used to query Reactome and InterPro for families and complexes 169

containing these genes. Reactome and InterPro families with equivalent sets of 170

members were incorporated into equivalences.csv. Python scripts for generating 171

and updating these mappings are available in the FamPlex GitHub repository at 172

import/reactome mappings.py and import/interpro mappings.py. Additional 173

identifier mappings to PFAM, NCIT, NextProt, GO and MeSH were collected by en- 174

tering FamPlex identifiers and lexicalizations into the TRIPS/DRUM web service 175

available at http://trips.ihmc.us/parser/cgi/drum [27]. The TRIPS/DRUM 176

web service returned identifier mappings and their scores based on partial string 177

matches to a variety of databases, which were then manually curated for inclusion 178

in FamPlex. 179

Curation of lexical synonyms for entities 180

Entities defined in FamPlex are associated with lexical synonyms in the grounding 181

map (grounding map.csv; Figure 1A). These synonyms allow natural language 182

processing tools to match named entities extracted from text to the protein families 183

and complexes contained in the FamPlex hierarchy. 184

Lexical synonyms were curated in two ways. First, named entities extracted from 185

the “training” articles read by REACH were sorted by frequency, and named enti- 186

ties corresponding to FamPlex families and complexes were added to the grounding 187

map. Entries were also added to the grounding map for frequently occurring but 188

incorrectly grounded named entities of other types (e.g., proteins, chemicals, and 189

biological processes). For less-frequently encountered families and complexes, syn- 190

onyms were curated using a different approach: names and synonyms for the gene- 191

level members of families and complexes were used to search the named entities 192
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extracted by REACH. Potential matches were identified by fuzzy string matching 193

(Levenshtein distance [28]) using the Python fuzzywuzzy package and subsequently 194

manually curated. 195

Of the 2,076 entries in the FamPlex grounding map, 1,186 map to FamPlex iden- 196

tifiers; the remaining 890 map to frequently occurring proteins, chemicals, and bi- 197

ological processes. The distribution of lexical synonyms across the set of FamPlex 198

identifiers is shown in Figure 2C. The frequently-occurring entities NFkappaB and 199

ERK have the most synonyms, with 13 and 9, respectively; many other less-frequently 200

occurring entities have only a single synonym. Examples of synonyms for NFkappaB 201

include “NF-kB”, “NFkappaB”, and “NF-kappaB TFs”; synonyms for ERK include 202

“ERK 1/2”, “ERKs”, and “Extracellular Signal Regulated Kinase”. 203

Curation of gene/protein affixes 204

References to genes and proteins in the literature are often modified by affixes that 205

describe modifications or other context. For example, “mmu-AKT1” and “pAKT1” 206

refer to murine and phosphorylated AKT1, respectively. A list of 137 case-sensitive 207

affixes was tabulated by alphabetically sorting a list of ∼80,000 named entities 208

resulting from event extraction and manually identifying common affix patterns. 209

These affixes were subsequently grouped into six semantic categories (Table 2). 210

The largest category, “experimental context”, contains affixes used to identify the 211

precise variant of a gene used in an experiment; these often refer to protein tags 212

or gene delivery methods. Two of the six categories affect event extraction as well 213

as grounding: “protein state” affixes contain information on modification, location 214

and mutation states, while “inhibition” affixes invert the apparent polarity of an ex- 215

tracted event. For example, a positive regulation event mediated by “BRAF siRNA” 216

actually represents a negative regulation by BRAF itself. The full list of affixes can 217

be found in the CSV file gene prefixes.csv (Figure 1A). 218

Resource structure and scope 219

FamPlex comprises 441 families and complexes that together cover 2,040 specific 220

genes through isa and partof relations. Most FamPlex entries (315) are at the top 221

level of the hierarchy, having no parent entities; 111 entries are at an intermediate 222

level, having both parent and child entities; 15 entities function as placeholders with 223

no parent or child relations currently specified. This latter category consists pri- 224
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marily of functional categories with many potential protein members, e.g., GTPase, 225

Phosphatase, Protease, etc. 226

The top-level entries vary in terms of the depth of the hierarchy they subsume 227

with the majority of entries (275 in total, two examples being RAS and RAF) directly 228

being resolved to a set of specific constituent genes. 37 entries have two subsumed 229

levels (for instance PLC which subsumes the subfamilies PLCD, PLCG, and PLCB, which 230

in turn subsume a total of nine constituent genes), and 3 entries (G protein, HSP90 231

and PI3K) subsume three levels. 232

FamPlex entries vary in terms of the number of children they subsume with an 233

average of 6.0 ± 7.1 children, the large standard deviation indicating the long- 234

tailed nature of the distribution. While the median FamPlex entry has 3 children, 235

several entries have a much larger number, including RAB (68 children), Histone 236

(60 children) and Cyclin (31 children). 237

To characterize the scope and relevance of the different identifiers we quantified 238

the prevalence of each FamPlex entry in PubMed-indexed articles. We conducted 239

PubMed searches for each lexicalization of a given FamPlex entry (using the rel- 240

atively restrictive “text word” search mode of PubMed to avoid partial matches 241

and matches to meta-information) and counted the total number of unique articles 242

found for each FamPlex entry itself and also for each entry and all its children. The 243

total number of PubMed-indexed articles mentioning one or more FamPlex entries 244

(or children) was 4,012,468, or roughly 14% of all PubMed-indexed literature. The 245

mean number of citations per FamPlex entry was 13,091 ± 26,733 with a median of 246

3,034, reflecting a distribution skewed toward a small number of highly cited entries. 247

When including the children of each entry, the number of citations per entry was 248

higher, with a mean of 16,136 ± 29,491 and a median of 4,929. The most commonly 249

appearing FamPlex entry was Interferon with 204,228 associated articles; only 11 250

FamPlex entries had fewer than 100 associated PubMed citations. Thus, FamPlex 251

covers entities that are frequently mentioned in the biomedical literature. 252
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Utility and Discussion 253

Protein families and complexes appear frequently in events extracted from literature 254

and are often incorrectly grounded 255

To evaluate baseline grounding performance without FamPlex we manually scored 256

a random sample of 300 named entities generated by running REACH on the train- 257

ing corpus. Entities were categorized by type (protein/gene, family/complex, small 258

molecule, biological process, microRNA, and other/unknown) and the database 259

mappings identified by REACH were scored for correctness (Table 3). Where the 260

entity text alone was insufficient to evaluate grounding accuracy, the sentence in 261

which the entity was embedded was examined in the context of the original paper. 262

We found that references to protein families and complexes were second only to 263

genes and proteins in the frequency of their occurrence in events extracted from 264

text, accounting for 17.7% of all extracted entities (Table 3). Grounding accuracy 265

was substantially lower for families and complexes relative to genes and proteins, 266

with only 15.1% of families and complexes correctly grounded compared to 78.7% 267

for individual proteins (Table 3). The 15% rate of correct grounding for families 268

and complexes reflected accurate matches to identifiers in InterPro or PFAM. No- 269

tably, seven of the top ten most frequently occurring ungrounded entity texts in 270

the training corpus represented families or complexes (“NF-kappaB”, “ERK1/2”, 271

“mTORC1”, “NFkappaB”, “PDGF”, “IKK”, and “histone H3”; Table 4). Overall, 272

REACH identified a total of 163,428 unique named entity strings involved in events, 273

out of which 2,873 were grounded (correctly or incorrectly) to a protein family or 274

complex (1.8%). 275

Close inspection of errors made by REACH in grounding frequently-occurring 276

families and complexes in the absence of FamPlex revealed the causes of both miss- 277

ing and incorrect groundings. Missing groundings occurred when named entities 278

corresponding to families and complexes had no associated identifiers, indicating a 279

failure to find a match in any database. This was true of the entity “Ras”, as well 280

as the most frequently occurring family-level entity, “NF-kappaB”. 281

On the other hand, incorrect grounding of family-level entities occurred due to 282

exact (but spurious) matches to obscure synonyms for other genes listed in Uniprot 283

or HGNC. In some cases these genes were unrelated to the family but had synonyms 284

shadowing the family name: for example, “ERK” and “Cyclin” were grounded to 285
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the human genes EPHB2 (Uniprot P29323) and PCNA (Uniprot P12004) due to the 286

presence of these strings as synonyms. Another class of grounding errors involved 287

the matching of a string representing the basename of a human protein family to 288

the single ortholog of the family in different organism. Representative examples 289

include the misgrounding of “AKT” to the Dictyostelium discoideum gene pkbA 290

and of “JNK” to the Drosophila melanogaster gene bsk, both of these listing the 291

human gene family name as synonyms. 292

The most common ungrounded strings (those in the highest percentile by fre- 293

quency of occurrence) accounted for a surprisingly large proportion of the overall 294

number of ungrounded string occurrences, as shown by the orange curve in Figure 295

3A. The deviation of this curve from a uniform distribution (shown by the dotted 296

gray line in Figure 3A) arises because the empirical distribution of ungrounded en- 297

tities is highly skewed, with a small number of very common entities accounting 298

for a large percentage of occurrences. For example, half of all ungrounded string 299

occurrences in the training corpus involved the top 2.4% most frequently occurring 300

strings (2,666 distinct strings). This explains why curation that is focused specifi- 301

cally on frequently occurring misgrounded entities has the potential to substantially 302

improve overall grounding and reading performance. 303

Use of FamPlex in text mining improves grounding and relationship resolution for 304

protein families and complexes in two event extraction systems 305

Following the manual curation of FamPlex identifiers and associated synonyms and 306

the integration of FamPlex into REACH and INDRA, we performed a second evalu- 307

ation on a random sample of 300 named entities drawn from the results of processing 308

the test corpus (Table 3). The frequency of entity types was comparable between the 309

training and test samples, with proteins/genes and families/complexes accounting 310

for roughly three-quarters of all entities. Improvements in grounding were substan- 311

tial for both classes, with grounding accuracy for families and complexes rising 312

from 15% to 71% (Figure 3B; Table 3). Grounding accuracy for proteins and genes 313

increased from 79% to 90%, an improvement attributable to the curation of syn- 314

onyms for frequently occurring proteins. With the incorporation of FamPlex, the 315

overall percentage of unique entity strings grounded to protein family or complex 316
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identifiers doubled relative to the training corpus, with REACH grounding 2,080 of 317

57,088 unique entities to a FamPlex, InterPro or PFAM identifier (3.6%). 318

An analysis of the distribution of the remaining ungrounded entities showed 319

that FamPlex addressed a substantial proportion of the most frequently occurring 320

grounding failures (Figure 3A, green curve). As shown in Table 4, the top ten most 321

frequently occurring ungrounded entities in the test set occur at a lower overall 322

frequency and include a functional category (“receptor”) but no specific protein 323

families or complexes. To examine the impact of grounding improvements at the 324

level of extracted events, we calculated the proportion of events consisting either 325

of any or all ungrounded entities, and found that both metrics improved with the 326

use of FamPlex (Figure 3C). These measures, which deal only with event entities 327

that were ungrounded, represent an underestimate of the overall improvement in 328

grounding because they do not account for cases in which entities were grounded 329

to the wrong identifier in the absence of FamPlex. 330

To characterize whether improvements in grounding were driven by a small sub- 331

set of frequently-occurring entities in FamPlex or were more broadly distributed 332

across families and complexes, we counted the occurrences of mappings to each 333

FamPlex identifier in events extracted from the test corpus. We found that the 15 334

most frequently-referenced FamPlex identifiers accounted for 50% of all FamPlex 335

groundings (blue bars in Figure 3D); the top five are shown in Table 5. At the 336

same time, 363 of the 441 FamPlex identifiers were mapped to text at least once, 337

suggesting that the great majority of identifiers and lexical synonyms in FamPlex 338

are useful for improving grounding (Figure 3D). 339

As a second means to evaluate FamPlex we used the TRIPS/DRUM reading 340

system [27]. Unlike REACH, which uses strict string matching against a set of 341

dictionaries, TRIPS uses soft matching to provide a ranked, scored list of groundings 342

for each named entity. Relevant dictionaries used by TRIPS include PFAM and 343

NextProt for protein families, GO for protein complexes and NCIT for both. 344

We compiled two versions of TRIPS, one in which FamPlex was included as a 345

grounding resource, and one in which it was omitted. Since the throughput of TRIPS 346

is substantially lower than that of REACH, we selected a random sample of 100 347

abstracts from the combined training and test set for reading with and without 348

FamPlex. We then manually curated 500 randomly sampled entities appearing in 349
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TRIPS extractions, determining whether each entity represented a protein family 350

or complex, and if so, whether: (i) the top scoring grounding match was correct, 351

and (ii) any of the grounding matches were correct. In contrast to our evaluation of 352

entity grounding in REACH, in which the curated entities were limited to arguments 353

of events, here we considered all entities identified in text by TRIPS as candidate 354

families or complexes for curation. This broader pool of candidate entities included 355

names of cell lines, organisms, biological processes, etc., and therefore also a smaller 356

proportion of molecular entities such as families and complexes. 357

In the case of TRIPS without FamPlex, 36 of 500 entities sampled from the 358

TRIPS output corresponded to families or complexes. Of these, we found that the 359

top scoring grounding was correct for 23 (64%); 29 entities (81%) had at least one 360

correct grounding. The higher baseline accuracy of family/complex grounding in 361

comparison with REACH likely reflects broader coverage of relevant identifiers due 362

to the inclusion of NextProt and NCIT (used by TRIPS but not by REACH) and the 363

more robust but computationally costly soft-matching and ranking procedure used 364

for grounding. While no single resource accounted for the majority of all matches, 365

top-scoring matches were roughly equally distributed between NCIT and NextProt. 366

Moreover, of the 17 entities that were correctly grounded in NCIT, 7 (41%) had no 367

identified child concepts, making it impossible to link these families and complexes 368

to constituent genes. Thus, while TRIPS was more successful than REACH at 369

finding relevant groundings for families and complexes in the absence of FamPlex, 370

the multiplicity of alternative groundings and the unresolved nature of these terms 371

in the ontologies used posed a distinct problem, that of relationship resolution. 372

Incorporating FamPlex into TRIPS improved both the accuracy and consistency 373

of grounding. In a sample of 500 entities extracted by TRIPS using FamPlex, 33 374

corresponded to families and complexes; the top-scoring grounding was correct for 375

26 (79%) of these and a further four (91% overall) had at least one correct ground- 376

ing. While the small sample sizes limit quantitative conclusions about the degree 377

of improvement, we noted that in 18 of 26 (69%) cases in which the top-scoring 378

grounding was correct, it was grounded to a FamPlex identifier, and in 20 of 26 379

(77%) a FamPlex grounding was among the top two matches. This indicates that 380

FamPlex identifiers and lexicalizations have a higher coverage for families and com- 381
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plexes encountered in text by TRIPS than other resources used, allowing for more 382

consistent relationship resolution and integration of information. 383

FamPlex includes a large majority of families and complexes annotated by human 384

curators in text 385

In addition to the evaluations of grounding precision described above, we sought 386

to establish a measure of the recall of FamPlex in terms of its coverage of relevant 387

families and complexes in a manually curated dataset. Evaluations solely against 388

machine reading output, as described above, do not provide a true recall measure 389

because the readers extract only a subset of the events and entities from the under- 390

lying text. 391

To evaluate recall we used the dataset prepared for the bioentity normaliza- 392

tion task from Biocreative VI Task 1.1 (http://www.biocreative.org/tasks/ 393

biocreative-vi/track-1/). The dataset, drawn from the EMBO SourceData an- 394

notation project [29], contains a corpus of entity text strings from figure legends in 395

published papers, most of which have been annotated with database identifiers by 396

human curators. Our aim was to evaluate the extent to which FamPlex incorporates 397

identifiers and lexicalizations for the family and complex-level entities identified in 398

text by human curators. 399

Inspection of the Biocreative dataset revealed that curators annotated family- 400

and complex-level strings in multiple ways: to a single gene, multiple genes, or 401

simply left ungrounded. We therefore partitioned the annotation data into multiple 402

subsets for the purposes of evaluation (Table 6). The first of these was the subset 403

of 19,228 entities grounded to human Uniprot or NCBI gene identifiers, which we 404

denote Annotation Subset 1 (AS1; 18.7% of the total). Of these, 2,439 entities 405

(2.4% overall) were grounded to multiple human gene or protein identifiers; these 406

therefore correspond to gene families or protein complexes (denoted AS2). We also 407

drew from “ungrounded” entities, i.e., annotations labeled “gene” or “protein” but 408

lacking identifiers. A large majority of these represented experimental elements or 409

protein tags, e.g. “GFP”, “FLAG”, “GST”, etc. To streamline curation, we filtered 410

ungrounded entities against the affixes included in FamPlex; a high proportion of 411

ungrounded entities (8,250 of 14,227, or 58%) had matches in the FamPlex affixes list 412
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in gene prefixes.csv, leaving 5,977 entities for further curation, a subset denoted 413

AS3 (Table 6). 414

An initial round of scoring focused exclusively on identifying the proportion of 415

the 2,439 entities in AS2 (the subset containing multiple gene/protein groundings) 416

covered by FamPlex; we found that 1,908 (78%) had case-insensitive matches in 417

the FamPlex grounding map. Of the remaining 531 unmatched entities (represent- 418

ing 109 unique strings), manual curation indicated that 51 corresponded to non- 419

coding RNAs and were excluded, leaving 2,388 entities (1,908 + 480) with multi- 420

ple gene/protein groundings. Of the remaining 480 entities representing proteins, 421

manual curation indicated that 97 had corresponding identifiers in FamPlex. We 422

therefore calculated that FamPlex contained both string matches and identifiers for 423

79.9% of the entity texts in AS2, and identifiers but not string matches for a slightly 424

higher proportion (84%; Table 7). 425

Because families were not always grounded to multiple gene/protein identifiers by 426

human curators, we performed a second evaluation in which we manually curated 427

a random sample of entities drawn from AS1 + AS3. Of 764 curated entity strings, 428

109 were found to be synonyms for protein families or complexes (note that, unlike 429

in the evaluation against AS2 above, this assessment was made independently of 430

the annotations contained in the dataset). As in the previous evaluation, these were 431

scored for the presence of string matches and/or corresponding IDs in FamPlex, 432

yielding similar figures of 81.7% and 88.1%, respectively (Table 7). Taken together, 433

these results demonstrate that FamPlex incorporates identifiers and lexical syn- 434

onyms for a large proportion of the families and complexes relevant to manual 435

biocuration tasks from literature. 436

FamPlex resolves hierarchical relationships in extracted events 437

A key feature of FamPlex is that it allows for relationship resolution not only 438

“horizontally” (between different databases) but also “vertically” (between genes, 439

families, complexes, and any intermediate sets involving these elements). Lexical 440

synonyms can be defined at all levels in the FamPlex hierarchy (Figure 2A). The 441

combination of a hierarchical representation with a mapping of entities to text at 442

each level allows information about biological interactions to be correctly organized 443

and cross-referenced. 444
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For example, the FamPlex family PLC, representing the family of phospholipase 445

C enzymes, contains both individual genes (e.g., PLCE1 ) and FamPlex subfamilies 446

(e.g., PLCG, a sub-family consisting of the genes PLCG1 and PLCG2 ) as members 447

(Figure 4A). In results from the test corpus we found descriptions of meaningful 448

biochemical mechanisms associated with all three levels of this hierarchy—family, 449

subfamily, and genes (Figure 4A). Moreover, relevant events were extracted for 12 of 450

the 15 entities in the phospholipase C entity hierarchy, demonstrating the diversity 451

of available mechanistic information and the importance of relationship resolution. 452

To characterize the relevance of multi-level relationship resolution more broadly, 453

we counted the number of times a named entity identified by REACH in the test 454

corpus was mapped to a FamPlex identifier at three or more hierarchical levels: the 455

gene level (lowest), the top-level family or complex (highest), and any intermediate 456

level. Distributions of groundings for five FamPlex entries with three or more entity 457

levels are shown in Figure 4B. Overall, we found that 33 top-level FamPlex entries 458

(i.e. ones that are not subsumed through an isa or partof relation by another 459

FamPlex entry) were associated with groundings at three or more distinct levels, 460

and 242 top-level FamPlex entries had groundings at two levels (i.e. grounding to 461

the FamPlex entry itself and its constituent genes), showing that gene functions are 462

commonly discussed across multiple levels of specificity. 463

We also found that the identifier level used most frequently for grounding differed 464

among protein families and complexes, limiting generalizations about the relative 465

priority of gene- vs. family-level grounding for event extraction. For example, for 466

AMPK, the majority of references in the literature were to the top-level AMPK com- 467

plex, with a relatively small fraction of references to constituent genes or intermedi- 468

ates. On the other hand, most mappings to the family representing Phospholipase C 469

(PLC in FamPlex) were to constituent genes such as PLCG1, PLCD1, etc. Finally, 470

for the family of Activins (hetero- and homo-dimers of the transforming growth 471

factor beta family, Activin in FamPlex), most references were to specific dimer 472

subtypes—Activin A, Activin AB and Activin B—which are found at an interme- 473

diate level in the FamPlex hierarchy. 474
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Comparison of FamPlex with other resources 475

FamPlex bears similarities to three types of existing resources. The first of these are 476

large, systematic assemblies of protein families derived from sequence and domain 477

analysis; this set includes PFAM, InterPro, and Homologene. As a curated resource, 478

FamPlex is less comprehensive, since it includes only human genes and focuses pri- 479

marily on gene families and lexicalizations that are described in existing literature. 480

However, FamPlex includes complexes as well as families, based on the observation 481

that these high-level groupings of proteins are often interwoven in discussions of 482

gene function (e.g., “AMPK” and “AMPK-alpha”; Figure 2A). FamPlex also pro- 483

vides lexical synonyms for families and complexes, a feature generally absent from 484

large protein family databases. 485

A second class of comparable resources are the taxonomies of protein families 486

and complexes defined as part of biocuration projects or tools; examples include 487

Reactome, SIGNOR, and OpenBEL. These taxonomies are designed to meet the 488

need of biocurators to specify mechanistic interactions at the family or complex 489

level. Of these resources, we found the families and complexes defined by OpenBEL 490

to be the most systematic and reusable, and we therefore drew heavily on OpenBEL 491

in the construction of FamPlex. FamPlex differs from the families and complexes 492

defined in resources such as Reactome, SIGNOR and OpenBEL in three important 493

ways: (i) it includes an extensive set of lexicalizations to assist in grounding, (ii) it 494

enumerates equivalent family/complex identifiers between many of these resources, 495

allowing for mechanistic information to be integrated at the family/complex level, 496

and (iii) it allows for a multi-level entity hierarchy corresponding to the terms and 497

concepts used in the literature. 498

The third category of related resources are biomedical ontologies such as GO 499

and terminology resources such as NCIT and MeSH. While these resources are the 500

most broadly extensive and often contain synonyms for concepts, they have uneven 501

coverage of protein families and complexes specifically. In addition (as described in 502

our evaluation of grounding to NCIT in the TRIPS reading system) many identifiers 503

representing protein families and complexes do not incorporate child concepts at 504

the gene level, limiting their value for relationship resolution. 505

Thus, while FamPlex draws on and provides cross-references to all three classes 506

of resources described above, it differs from all of them in providing a consistent, 507
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multi-level taxonomy of human protein families and complexes that is suitable for 508

grounding and relationship resolution in text mining and biocuration. 509

Limitations 510

The relatively high recall achieved by FamPlex on the Biocreative entity normal- 511

ization dataset suggests that it provides substantial coverage of relevant protein 512

families, complexes and their lexical synonyms. However, it is not exhaustive. Fur- 513

ther empirically-guided curation of the identifiers and grounding map is likely to 514

improve grounding precision and recall still further, and with additional work map- 515

pings to other ontologies can be made more comprehensive. 516

FamPlex does not directly address the problem of ambiguity, selecting among 517

multiple alternative groundings for the same entity. For example, “MEK” can refer 518

to the family of MAPK/ERK Kinases or to the solvent methyl ethyl ketone. Resolv- 519

ing such ambiguities requires an examination of the named entity in the broader 520

context of the sentence or article [30]. However, the use of FamPlex does increase 521

the likelihood that relevant groundings to protein families will not be missed, and 522

can therefore be considered alongside alternative groundings during an ambiguity 523

resolution procedure. 524

Accessibility and Extensibility 525

We chose CSV files as the primary format for FamPlex to maximize accessibility 526

and extensibility. CSV files can be opened and edited in any spreadsheet program or 527

text editor, allowing biologists with no background in literature mining to assist in 528

the curation of the grounding map or create mappings to other resources. Because 529

the files are hosted on GitHub, other users can easily fork and make use-case specific 530

extensions or other contributions that can be merged back into the main repository. 531

In addition to the CSV files, FamPlex includes an Open Biomedical Ontologies 532

(OBO) [31] export feature to facilitate integration into OBO-based workflows. Fam- 533

Plex relations and mappings have been integrated into the TRIPS/DRUM reading 534

system [27] via OBO-exported content. 535

Conclusions 536

In this paper we describe the challenge posed by protein families and multi-protein 537

complexes for machine reading of the biomedical literature. We introduce Fam- 538
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Plex, a new lexical and ontological resource that addresses these challenges and 539

improves grounding and relationship resolution in two different reading systems 540

[21, 27]. FamPlex fills a gap in existing bioinformatics resources, linking informa- 541

tion about families and complexes in protein and pathway databases to a set of lex- 542

ical synonyms that occur with high frequency in the scientific literature. Empirical 543

evaluation shows that the hierarchical organization of FamPlex enables the integra- 544

tion of mechanistic information about gene families, complexes, and their individual 545

subunits. This is important because information about biochemical mechanisms is 546

often reported in terms of classes of entities whereas large-scale profiling experi- 547

ments yield data about individual genes and proteins. FamPlex therefore supports 548

the broader goal of making text mining a key contributor to the process of obtaining 549

biological insight from high throughput -omic data by drawing on relevant mech- 550

anistic knowledge. We speculate that similar resources for resolving hierarchical 551

relationships among entities could be useful in other domains of machine reading 552

and natural language processing. 553
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Figures 678
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Figure 1 FamPlex links named entities to protein families and complexes and their

constituents. (A) Structure of FamPlex content. The affixes in gene prefixes.csv can be used

to improve recognition of molecular entity names, which can be linked to database identifiers

using the lexical synonyms in grounding map.csv. FamPlex itself contains identifiers representing

families and complexes which are mapped to corresponding identifiers in other databases in

equivalences.csv. Hierarchical relationships among families, complexes, and genes are listed in

relations.csv. (B) Workflow for curation and evaluation. A gene list was used to define a

corpus of articles that was divided into two subsets, “training” and “test”. The “training” corpus

was processed with REACH and results were evaluated and used to guide curation. The “test”

corpus was processed after incorporation of FamPlex and results were compared against the

baseline from the training corpus
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Figure 2 FamPlex links identifiers for families and complexes to members, other databases,

and lexical synonyms. (A) FamPlex uses isa and partof predicates to represent the hierarchical

relationships between specific genes, families and complexes. Lexical synonyms can be associated

with entities at each level. (B) Mappings of FamPlex identifiers to outside databases. (C) Number

of lexical synonyms curated for FamPlex identifiers in the grounding map.
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Figure 3 FamPlex improves grounding accuracy. (A) Cumulative occurrences of ungrounded

entities by frequency of the entity text. Deviation from the dotted gray line, representing a

uniform frequency distribution, indicates the extent to which a small number of frequently

occurring entities account for a disproportionate share of missed groundings. (B) Improvements in

grounding accuracy for proteins/genes and families/complexes, with and without the use of

FamPlex. (C) Reduction in the proportion of extracted events containing ungrounded entities,

with and without FamPlex. (D) Number of groundings to FamPlex identifiers in the test corpus.

The 15 most frequent identifiers account for 50% of all groundings and are shown in blue.
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PMID24095926: “Previously, we demonstrated that the phosphorylation of PLC-gamma 
in response to EGF decreased in the presence of ATP.”

PMID24811382: “First, by coupling to Galpha, mGluR1 activates phospholipase C
and thus induces the generation of inositoltrisphosphate (IP).”

PMID12054652: “These data indicate that PLC-beta2 interacts with MKK3 as determined by 
yeast two-hybrid and co-immunoprecipitation studies.”
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Figure 4 FamPlex facilitates hierarchical resolution of extracted information. (A) Hierarchical

organization of the phospholipase C protein family (FamPlex identifier PLC) along with the

proportion of occurrences of each member in the test corpus and examples of sentences yielding

information at the different levels. Pink nodes indicate FamPlex families; gray nodes indicate

genes. (B) Proportion of groundings in the test corpus to gene-level, intermediate-level, or

top-level entities for five multi-level families/complexes in FamPlex.
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Tables 679

Table 1 Composition of article corpus by source.

Text Source Type Number %

MEDLINE Abstract 187,176 69.5

Elsevier XML 35,327 13.1

Pubmed Central Open Access Subset XML 32,113 11.9

Pubmed Central Author Manuscript XML 13,777 5.1

No content retrieved 267 0.1

Pubmed Central Open Access Subset text file 52 0.02

Total 269,489 100

Table 2 Gene/protein affix types.

Category # of affixes Example

Experimental context 63 eGFP-{Gene name}
Protein state 30 phospho-{Gene name}
Inhibition 22 shRNA-{Gene name}
Generic descriptor 12 proto-oncogene {Gene name}
Species 9 mmu-{Gene name}
mRNA grounding 1 {Gene name} mRNA

Table 3 Entity frequency and grounding accuracy for 300 entities, with and without FamPlex.

Standard error was calculated using the formula
√

(k/n)(1− k/n)/n where k is the number of

samples in the given category and n is the total number of samples.

No FamPlex With FamPlex

# Entity % # Corr. % Corr. # Entity % # Corr. % Corr.

Protein/gene 169 56.3 133 78.7 ± 3.1 172 57.3 154 89.5 ± 2.3

Family/complex 53 17.7 8 15.1 ± 4.9 52 17.3 37 71.2 ± 6.3

Small molecule 33 11.0 18 54.5 ± 8.7 26 8.7 14 53.8 ± 9.8

Biological process 28 9.3 24 85.7 ± 6.6 28 9.3 28 100.0 ± 0.0

Other/unknown 16 5.3 0 0.0 ± 0.0 21 7.0 0 0.0 ± 0.0

microRNA 1 0.3 0 0.0 ± 0.0 1 0.3 0 0.0 ± 0.0

Table 4 Top 10 most frequently occurring ungrounded entity texts with and without FamPlex in the

training and test corpora, respectively.

No FamPlex With FamPlex

Rank Entity Text Count % of Total Entity Text Count % of Total

1 NF-kappaB 18,381 3.78 PKCzeta 222 0.24

2 ERK1/2 6,137 1.26 RANTES 176 0.19

3 mTORC1 2,753 0.57 DC 169 0.18

4 NFkappaB 2,425 0.50 LDL 168 0.18

5 c-Jun 2,369 0.49 IgE 152 0.17

6 antigen 1,724 0.35 SDF-1-alpha 141 0.15

7 PDGF 1,626 0.33 receptor 128 0.14

8 IKK 1,542 0.32 beta1 integrin 127 0.14

9 c-Src 1,362 0.28 p38alpha 126 0.14

10 histone H3 1,347 0.28 CD4+ 124 0.14
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Table 5 FamPlex entries most frequently grounded to in test corpus, with the absolute number of

times grounded to in the test corpus and the percentage normalized to all FamPlex groundings.

# % FamPlex

ERK 6,301 7.6

AKT 5,839 7.1

NFkappaB 5,768 7.0

TGFB 2,877 3.5

PI3K 2,486 3.0

Table 6 Subsets of the Biocreative VI entity normalization dataset relevant to the FamPlex

evaluation. Entities evaluated against FamPlex were drawn from the categories highlighted in bold.

Annotation Category # % of total

All annotations 102,717 100.0

Grounded to gene/protein 44,576 43.4

Grounded to human gene/protein (AS1) 19,228 18.7

Grounded to multiple human genes/proteins (AS2) 2,439 2.4

Ungrounded gene/protein 14,227 13.9

Ungrounded gene/protein matching FamPlex affix 8,250 8.0

Ungrounded gene/protein not matching FamPlex affix (AS3) 5,977 5.8

Table 7 Extent of FamPlex family/complex coverage evaluated against subsets of the Biocreative VI

entity normalization dataset.

Annotations Scored String Matches Corresponding IDs

Multiple gene/protein groundings (AS2) 1908 / 2388 (79.9%) 2005 / 2388 (84.0%)

Families curated from random sample of AS1 + AS3 89 / 109 (81.7%) 96 / 109 (88.1%)
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